NO ME SALEN
EJERCICIOS RESUELTOS Y APUNTES DE FÍSICA Y BIOFÍSICA DEL CBC
|
|
|
No me sale un ejercicio pero me parece que es porque
SOBRAN DATOS O FALTAN DATOS |
De cada dos veces que me hacen una consulta durante un examen una es así: "¿no faltan datos?". Y la respuesta más probable es: "NO, NO FALTAN". Vamos con un ejemplo sencillo. Supongamos que te enfrentás a un ejercicio que dice:
Un automóvil viaja a cierta velocidad y frena con una aceleración de
4 m/s². ¿Cuál es la distancia, d, que necesita para detenerse?
Efectivamente falta algún dato para que puedas responder algo como 8 m, o 27 m, o la distancia que fuera. Tal como están las cosas esa distancia no se puede calcular. Ante una situación así algunos colegas aconsejan a los estudiantes que agregen un dato (que creen faltante) inventándolo y -por supuesto- aclarando que hicieron ese agregado. Considero que ese consejo es un error, ya que no es una buena costumbre y además el problema se puede resolver igual, O MEJOR, sin agregar nada. Si operamos algebraicamente (no voy a hacerlo acá) resulta |
d = v² / 2 m/s²
o sea, se podía encontrar una respuesta al problema en función de la velocidad del automóvil que -dicho sea de paso- está mencionada en el enunciado del ejercicio. Puede ser que el autor se haya olvidado de poner el valor de esa velocidad, o también puede ser que quería justamente eso. Así, por ejemplo, si el auto marchaba a 10 m/s, entonces... 10 por 10 es 100, dividido 2... el auto necesita 50 metros para detenerse; si en cambio el auto viajaba a 30 m/s... y así. Un problema de este estilo no es más difícil que uno numérico, pero es muchísimo más rico. |
|
Otras veces no faltan datos: sólo parece que faltaran datos. El enunciado dice poco o nada y ante tal escasez uno no sabe cómo arrancar, para dónde disparar. Mirá, la consigna general es ésta: siempre pa'delante. A mí los números me dan alergia, de modo que prefiero trabajar con letras. Si el autor del problema hubiera dicho velocidad del automóvil igual a 15 m/s, yo igual hubiese resuelto todo el problema utilizando la letra v, y no 15 m/s, y menos que menos 15 a secas. Sobre el descuento, en el último renglón hubiera reemplazado por el 15 y te daba la respuesta numérica. No antes. |
De modo que estén los datos, o falten... lo importante es que vos le pongas nombre -una letra- a cada magnitud que necesites, hagas álgebra con esa letra, y alcances el resultado. Tenés un ejemplo bellísimo en este ejercicio.
En otras oportunidades los enunciados traen datos de más. Esto también es una dificultad. Muchas veces encuentro estudiantes "trabados" en la resolución de un problema porque no saben qué hacer con ese dato que figura en el enunciado y que aparentemente no necesitan. Si el docente de turno confiesa: "es correcto, sobra ese dato", entonces el estudiante maldice a todo el magisterio de la Argentina y el Planeta, por tramposo, abusador y maléfico, protestando por el tiempo perdido en la maldita TRAMPA. El error es nuestro, lo acepto. Y consiste en que todos los ejercicios deberían tener uno, dos, tres, cinco datos innecesarios. Y una de las tareas más importantes del aprendizaje consiste en elegir los datos con los que trabajar. Un planteo de este tipo es mucho más realista. Cuando debemos resolver un problema de la vida real, el universo nos ofrece y pone a nuestro alcance cientos de magnitudes que podemos medir, tomar y utilizar en la solución del problema. |
Lo cierto es que aunque vos o tu docente crean que sobran o faltan datos, tenés que ser capaz de manejarte de la misma manera que si no. No importa si el autor del ejercicio se equivocó o creyó que te ponía una trampa. Vos como si nada. Pa'delante. La mayoría de las veces no faltan ni sobran datos. Es una pena.
|
|
Algunos derechos reservados.
Se permite su reproducción citando la fuente. Última actualización mar-07. Buenos Aires, Argentina. |
| | |
|
| | |
|
|
| |
|
|